
Jan. 2018 

Rust Case Study: 

How Rust is Tilde’s Competitive 
Advantage  
 
here
The analytics startup innovates safely with the help of Rust 

Copyright © 2018 

The Rust Project Developers 
All rights reserved 
graphics by Aldric Rodríguez and Chameleon Design from the Noun Project 
 



 

 

Lorem ipsum dolor sit amet, consectetur adipis Praesent 
ac tincidunt lacus, vel commodo neque. Nam vitae lequis 
purus sodales dictum non et nisl. n ornare, justo eu mstie 
blandit, felis felis lacinia ex, at fermentum ex justo.Iquam 
fugit eos eturem aut et et modisit delist aut plaut utRidit, 
odi omniet at ullor aborehendit ut opta nem deliquiatur 
simendunt et pedi re, que doluptio 

Jan. 2018 

Rust at Tilde 
 

t e s t  
 
 
 

 
 
 

Tilde, Inc is a startup based in Portland, OR disrupting the application performance 
monitoring space. Their product, Skylight, turns performance data from Ruby on Rails 
applications into actionable insights so that developers can keep their applications fast. With 
a team of 6 developers of various skill levels, Tilde is gaining ground in a crowded market. 
One of their competitive advantages? Rust. 
 
 
     

 
 

Low Customer Tolerance for Resource Usage and Crashing 
     
 

    "Because our product helps people identify why their apps are slow, it is very 
important that we ourselves do not make their app slow," says Yehuda Katz, 
CTO of Tilde. The Skylight agent runs within a customer’s production Rails 
application to monitor real performance metrics. The tolerance customers have 
for memory and CPU overhead used by this agent is extremely low, and their 
tolerance for crashes lower still.  
 
     
Attempted Solutions: Ruby and C++ 
 
     

    In 2013, Tilde shipped the first version of the agent, written in Ruby. While 
the Ruby implementation enabled Skylight to get started, the agent was limited 
in the data it could collect. Any feature added to the agent would make it use an 
unacceptable amount of memory. If Skylight wasn’t able to add differentiating 
features, it wouldn’t be able to compete against the entrenched players in the 
analytics space. 
     
    Katz and his team spent time squeezing every drop of performance out of 
Ruby including removing uses of higher-level features of the language that 
required more resources. This had only a marginal impact on performance and 



RUST AT TILDE                                 2018  
 

 

3 

made the code much less maintainable. Members of the team would have to 
become experts in Ruby and maintain constant vigilance lest a common yet 
inefficient Ruby feature got added to the agent. This would take time away from 
implementing features and severely constrain who Tilde could hire. 
     
    Next, they prototyped the agent in C++. Although the C++ implementation 
used fewer resources, it also introduced an unacceptable risk of crashes. 
Training existing Ruby developers to maintain safe C++ code would take too 
much time. Hiring a C++ expert specifically for maintaining the agent wouldn’t 
be ideal in a startup where everyone wears multiple hats and everyone can help 
with many parts of the product. C++ wasn’t ideal either. 
 
Enter: Rust 
 
    In December 2013, Rust started making waves. Even though Rust had yet to 
release 1.0 with its associated stability guarantees, Katz was intrigued by the 
safety guarantees Rust promised without requiring a garbage collector. After 
only replacing the Ruby data structures in the agent with Rust data structures, 
they saw a larger impact in reducing the amount of overhead used by the agent 
than they saw from all the earlier Ruby performance tuning. 
     
    By 2014, the Skylight agent with some Rust code was ready to ship to 
production. The reduction in overhead enabled by the use of Rust made it 
possible for Skylight to add a killer feature of tracking the memory allocations 
made by Rails requests. Even better, there were no reports of segfaults from 
Skylight’s customers! This early success encouraged the team to rewrite the 
entire agent in Rust. 
     
    Most of Skylight’s customers hosted their applications on Heroku, where they 
were subject to a 256 or 512 MB memory limit. To avoid putting customers 
over this limit, the Skylight agent came with a daemon that would restart the 
agent if its memory usage exceeded 100 MB. Before the Rust rewrite, the 
daemon was restarting Skylight agents constantly and customers still often 
reported they received errors from Heroku that their applications were over the 
memory limit. 



RUST AT TILDE                            2018  
 

 

4 

 
 
    After rewriting of the agent in Rust, the agent consistently used 8 MB: 92% 
smaller! Once this version was shipped to production, there were no more 
customer reports of being over the Heroku memory limit. In terms of raw 
performance, Rust was a clear win, but that wasn’t the only benefit the Tilde 
team saw. 
 
Making Room for New Features 
 

Because of the strict memory requirements in the environment in which the 
Skylight daemon runs where the total application memory had to fit under the 
Heroku limits, memory usage was an important design consideration. Rust 
allowed the Tilde engineers to craft differentiating features that collect more 
data in Skylight without having to worry about unintentional resource bloat 
caused by garbage collection and a language runtime. In the time between the 
switch to Rust in Nov 2014 and the end of 2017, Tilde was able to add to the 
agent support for applications like Sinatra and Grape, databases like MongoDB, 
and understanding of more complex types of queries, all while keeping the 
daemon’s memory usage around 8 MB. 

 
Effectively Zero Crashes 
 

Tilde reports that the Skylight project has been reliable across a range of 
customer operating systems and contexts, including macOS and various Linux 



RUST AT TILDE                                 2018  
 

 

5 

flavors. Katz also observes that Rust’s safety features have maintained the 
reliability of the agent, unlike other programming languages they could have 
chosen. "We've never made a programming error in Rust code that has caused 
a segfault that our users have reported," he is pleased to say. 
 
More Maintainable 
 

Rust’s dependability meant that updates were “fire and forget,” allowing 
Tilde to regularly push out updates to a variety of clients without fear that 
software issues would cause downtime for their clients. Over the last 3 and half 
years, there have been 63 releases of the Skylight agent; each of which were 
quickly and easily adopted by their customers. 
 
Prevented Data Races at Compile Time 
 

Rust’s prevention of data races at compile time allowed Tilde to discover 
potential issues long before a user could find it in production. In one such case, 
engineers new to Rust changed Skylight’s logging ability to use a new data 
structure to help prevent duplicates in log messages. The Rust compiler gave an 
error and showed that this new data structure would not play well with the 
concurrency inherent in the system. Once fixed, the application worked as 
expected. Katz notes that a bug like this would have gone undetected in other 
systems languages and could have caused crashes, data corruption, or even data 
loss in production, while also being difficult to discover and fix correctly. Rust 
enabled the team to catch and fix this problem early in the development 
process. 
 
Teachable to a Broad Team 
 

Katz points out that there are three aspects of Rust that make it eminently 
teachable to a team with a broad range of experience levels: 
 

• Interest in learning Rust. Engineers have a sense that Rust genuinely 
improves their marketable skills in an area that is very different from what 
they're already good at. As Vaidehi Joshi, Software Engineer at Tilde, 
puts it, “I think that Rust does a good job of combining the theory and 



RUST AT TILDE                            2018  
 

 

6 

practice of Computer Science concepts, without being too scary for 
someone who is new to systems programming.” 

 

• Rust’s safety. Rust is much easier to teach than C or C++, largely 
because of the depth of knowledge an engineer needs to have before 
modifying C or C++ code correctly. “The compiler is easily my favorite 
part of working on Rust projects at Tilde,” says Software Engineer Lee 
Baillie. “It often feels almost like Test Driven Development in that I can 
be certain the code is at least technically correct if it will compile. When it 
doesn't compile, I get a usually-helpful error message that helps me figure 
out what went wrong. This is nice compared to writing Ruby or 
JavaScript because I often don't know that something will break until 
runtime. I would much rather know about these kinds of small mistakes 
before they become a problem!” 

 

• Cargo and the Rust library ecosystem. Because these tools are 
similar to modern package managers in other languages, the team was 
comfortable jumping in to Rust. Cargo reduces the need to learn a less-
ergonomic environment than that of other systems programming 
languages just to get basic builds working. This allows them to focus on 
learning the language, rather than spending time getting tools and build 
systems set up and working properly. 

 
The Future of Rust at Tilde 
 

The Tilde engineers, encouraged by these improvements in the Skylight 
agent, have begun rewriting the data collection and processing server 
application from Java to Rust. Rust’s smaller memory footprint was 
immediately noticeable; while the Java server could use up to 5GB of RAM, the 
comparable Rust server only used 50MB.  

While Rust won’t ever be the only tool in Tilde’s toolbox, the success the 
company has seen in their ability to add features without overhead has made 
the team confident that Rust is a solid choice.  


