

Feb 25, 2019

Rust Case Study:

Community makes Rust an easy
choice for npm

here

The npm Registry uses Rust for its CPU -bound bottlenecks

Copyright © 2019

The Rust Project Developers
All rights reserved

RUST AT NPM 2019

2

Rust at npm

Facts and Figures

Over 836,000 JavaScript

packages are available

Each month, npm serves

over 30 billion packages

These downloads come

from over 10 million users

npm, Inc is the company behind npmjs.com and the

npm Registry. The largest software registry in the world,

it sees upwards of 1.3 billion package downloads per

day. In addition to maintaining the open source

Registry, npm also offers an enterprise registry product

and maintains a command-line tool to interact with

registries.

 The challenges that npm faces demand efficient

and scalable solutions. When a service can be deploy-

and-forget, that saves valuable operations time and lets

them focus on other issues. npm employees also value

having a helpful community around any technology

they use. Rust fits all these criteria and is currently in

use as part of npm's stack.

Problem: Scaling a CPU-bound Service

The npm engineering team is always on the lookout for areas that may potentially

become performance problems as npm's exponential growth continues. Most of the

operations npm performs are

network-bound and JavaScript

is able to underpin an

implementation that meets the

performance goals. However,

looking at the authorization

service that determines

whether a user is allowed to,

say, publish a particular

package, they saw a CPU-

bound task that was projected

to become a performance

bottleneck.

https://www.npmjs.com/

RUST AT NPM 2019

3

The legacy JavaScript implementation of this service in Node.js was in need of a rewrite in

any case, so the npm team took the opportunity to consider other implementations to both

modernize the code and improve performance before service degraded.

When considering alternate technologies, the team quickly rejected using C, C++, and Java,

and took a close look at Go and Rust.

A C or C++ solution is no longer a reasonable choice in the minds of the npm engineering

team. “I wouldn't trust myself to write a C++ HTTP application and expose it to the web,”

explains Chris Dickinson, an engineer at npm. These languages require expertise in memory

management to avoid making mistakes that cause catastrophic problems. Security problems,

crashes, and memory leaks were not problems that npm was willing to tolerate in order to get

improved performance.

Java was excluded from consideration because of the requirement of deploying the JVM and

associated libraries along with any program to their production servers. This was an amount of

operational complexity and resource overhead that was as undesirable as the unsafety of C or

C++.

Given the criteria that the programming language chosen should be:

● Memory safe

● Compile to a standalone and easily deployable binary

● Consistently outperform JavaScript

the languages that remained under consideration were Go and Rust.

Solutions Considered

Evaluation

To evaluate candidate solutions, the team rewrote the authorization service in Node.js, Go,

and Rust.

The Node.js rewrite served as a baseline against which to evaluate the change in technology

to either Go or Rust. npm is full of JavaScript experts, as you would expect. The rewrite of the

authorization service using Node.js took about an hour. Performance was similar to that of the

legacy implementation.

The Go rewrite took two days. During the rewrite process, the team was disappointed in the

lack of a dependency management solution. npm is a company dedicated to making the

management of JavaScript dependencies predictable and effortless, and they expect other

ecosystems to have similar world-class dependency management tooling available. The prospect

of installing dependencies globally and sharing versions across any Go project (the standard in

Go at the time they performed this evaluation) was unappealing.

RUST AT NPM 2019

4

They found a stark contrast in the area of dependency management when they began the

Rust implementation. "Rust has absolutely stunning dependency management," one engineer

Rust has absolutely
stunning dependency
management.

“

The rewrite of the service in Rust did take longer than both the JavaScript version and the

Go version: about a week to get up to speed in the language and implement the program. Rust

felt like a more difficult programming language to grapple with. The design of the language

front-loads decisions about memory usage to ensure memory safety in a different way than other

common programming languages. “You will write a correct program, but you will have to think

about all the angles of that correct program,” described Dickinson. However, when the

engineers encountered problems, the Rust community was helpful and friendly answering

questions. This enabled the team to reimplement the service and deploy the Rust version to

production.

enthused, noting that Rust's strategy

took inspiration from npm's. The Cargo

command-line tool shipped with Rust is

similar to that of the npm command-

line tool: Cargo coordinates the versions

of each dependency independently for

each project so that the environment in

which a project is built doesn't affect the

final executable. The developer

experience in Rust was friendly and

matched the team's JavaScript-inspired

expectations.

Results

forget about the Rust service because it caused so few operational issues. At npm, the usual

experience of deploying a JavaScript service to production was that the service would need

extensive monitoring for errors and excessive resource usage necessitating debugging and

restarts.

My biggest compliment
to Rust is that it’s boring.

“ npm’s first Rust program hasn't

caused any alerts in its year and a half

in production. "My biggest compliment

to Rust is that it's boring," offered

Dickinson, "and this is an amazing

compliment." The process of deploying

the new Rust service was straight-

forward, and soon they were able to

RUST AT NPM 2019

5

Community Matters

npm called out the Rust community as a positive factor in the decision-making process.

Particular aspects they find valuable are the Rust community’s inclusivity, friendliness, and

solid processes for making difficult technical decisions. These aspects made learning Rust and

developing the Rust solution easier, and assured them that the language will continue to

improve in a healthy, sustainable fashion.

Downsides: Maintaining Multiple Stacks

Every technical decision comes with trade-offs, and adding Rust to npm’s production

services is no different. The biggest downside of introducing Rust at npm is the maintenance

burden of having separate solutions for monitoring, logging, and alerting for the existing

JavaScript stack as well as the new Rust stack. As a young language, Rust doesn’t yet have

industry-standard libraries and best practices for these purposes, but hopefully will in the

future.

Conclusion

Rust is a solution that scales and is straightforward to deploy. It keeps resource usage low

without the possibility of compromising memory safety. Dependency management through

Cargo brings modern tools to the systems programming domain. While there are still best

practices and tooling that could be improved, the community is set up for long -term success.

For these reasons, npm chose Rust to handle CPU-bound bottlenecks.

